
Bash Interactive Command Modules (Bash-ICM)

Document #PLPC-180058
Version 0.1

December 12, 2018

This Document is Available on-line at:
http://www.by-star.net/PLPC/180058

Neda Communications, Inc.
Email: http://www.by-star.net/contact

http://www.by-star.net/PLPC/180058
http://www.by-star.net/contact

2

Contents

I About Bash-ICM: This Document, The Software And History 5

1 About BASH-ICM 7

1.1 The Concept Of Interactive Command Modules (ICM) . 7

1.2 Bash-ICMs as a subset of the Python-ICM Framework . 7

1.3 History Of Bash-ICMs and Python-ICMs . 7

1.4 About This Document . 7

II Concept and Model 9

2 Open Services Management Tools 11

2.1 Server To Services Transformation . 11

2.2 Open Services Management Tools . 11

2.3 GOALS . 11

2.4 Common Features . 12

2.5 Obtaining LSIP . 13

2.6 LSIP License . 13

2.7 LSIP Overview . 13

III Libre Platform Base 15

3 Open Platform Libraries 17

3.1 doLib . 17

3.2 visLib . 17

3.3 ocp-lib . 18

3.4 ocp-general . 18

3.5 ocp-lineNu . 20

3.6 ocpLibUse . 20

3

4 CONTENTS

3.7 opRunEnvLib . 20
3.8 opWrappersLib . 20
3.9 itemsLib . 21

3.9.1 Visibility Rules . 21
3.10 opDoAtAsLib . 22

4 Seed Scripts 23

4.1 seedActions.sh . 23
4.1.1 Description . 23
4.1.2 Example . 27

4.2 seedSubjectAction.sh . 27
4.2.1 Description . 27
4.2.2 Example . 32

Part I

About Bash-ICM: This Document, The
Software And History

5

Chapter 1

About BASH-ICM

1.1 The Concept Of Interactive Command Modules (ICM)

The concept and python realization of Interactive Command Modules (ICM) is described in:

Unified Python Interactive Command Modules (ICM) and ICM-Players
A Framework For Development Of Expectations-Complete Commands
A Model For GUI-Line User Experience
http://www.by-star.net/PLPC/180050 — [1]

You should continue reading this document after having read that document.

1.2 Bash-ICMs as a subset of the Python-ICM Framework

Bash-ICMs are a sub-set of Python-ICM Framework. The Remote-Operations model of Python-ICM is not imple-
mented in Bash-ICMs. Bash-ICM-Players are less complete than the Python-ICM-Players.
Bash functions whose names start with “vis_” become automatically visible at Bash-ICM’s command-line-interface.
This is similar to how the “Cmnd” classes become automatically visible at Python-ICM’s command-line-interface.

1.3 History Of Bash-ICMs and Python-ICMs

Bash-ICMs predate Python-ICMs and can be considered the origin of Python-ICMs.
Bash-ICMs used to be called IIMs (Interactively Invokable Modules). The collection of Bash-ICMs that are now called
BISOS (ByStar Intenernet Services OS) used to be called OSMT (Open Services Management Tools) and LSIP (Libre
Service Integration Platform).

1.4 About This Document

Most of this document was written before the evolutions that we mentioned in “History Of Bash-ICMs and Python-
ICMs”, hence their terminology predates the Python-ICMs.

7

http://www.by-star.net/PLPC/180050

8 CHAPTER 1. ABOUT BASH-ICM

We intend to update this document in the future. Since the basic information that is included in the current version
of this document still reflects the architecture of the implementation, the current document remains of value.

Part II

Concept and Model

9

Chapter 2

Open Services Management Tools

2.1 Server To Services Transformation

GNU/Linux demonstrated that large a complete Operating System can be put together purely in the Free Software
model.
Various forms of dedicated servers have been integrated based on GNU/Linux. Such server constructs are ad-hoc
integrations demanding much expertise.
Collective collaboration towards transformation of ad-hoc servers based on Free Software into mass usable agents
for delivery of Libre Services is the next challenge.
Construction of a set of Application Services requires an important extension beyond the underlying software layer.
Construction of a set of Application Services requires the integration of a set of software components together to
provide useful functionality to the user.
This integration layer must conform to correct principles of structure and consistency. Thus Free Services represent
an extension of the Free Software model based on structured and consistent integration.
The versatile “Glue” needed to bring about the needed structure and consistency is a crucial element for realization
of Libre Services. Much effort has been devoted to creation of the initial implementation of this Glue. See “Open
Systems Management Tools”, [?] for more details.

2.2 Open Services Management Tools

OSMT (Open Services Management Tools) are a set of tools on top of which various consistent polices can be imple-
mented.
This is a collection tools that collectively lets you consistently manage Unix and Linux systems and some of the tools
will also manage Windows system.

2.3 GOALS

Key goals for the design has been:

• Be very Unix centric. Focus on Solaris and Linux

11

12 CHAPTER 2. OPEN SERVICES MANAGEMENT TOOLS

• Limit use of the tools to what is minimally and genericly available on plain Unix systems. Namely Korn Shell.

• Be consistent in use of the tools. View this work as a collection. Not bits and pieces here and there.

• Don’t view the tools as host management tools, view them as domain management and system management
tools.

• Support consistent and simultaneousmanagement of multiple domains. Detection of Sites, Domains andHosts
is an integral part of these tools.

• Tools should be location independent.

2.4 Common Features

The following features are available to all scripts based on
seedActions.sh and seedSubjectActions.sh

Tracing: -T <runLevelNumber> -- Ex: mmaQmailHosts.sh -T 9 ...
Run Mode: -n <runMode> -- Ex: mmaQmailHosts.sh -n runSafe ...
Verbose: -v -- Ex: mmaQmailHosts.sh -v
Force Mode: -f -- Ex: mmaQmailHosts.sh -f
Check Mode: -c -- Ex: mmaQmailHosts.sh -c fast

Tracing
=======

DEFAULT: -T 0

Trace Number Conventions:

0: No Tracing
1: Application Basic Info
2: Application General Info
3: Application Function Entry and Exit

4: Application Debugging
5: Wrappers Library
6: Seed Script
7: Seed Supporting Libraries (eg, doLib.sh)
8: ocp_library
9: Quick Debug, usually temporary

Run Mode:
=========

DEFAULT: runOnly

G_runMode=
showOnly: at opDo* just show the args always return 0
runOnly: at opDo* just execute
showRun: at opDo both runOnly and showOnly
runSafe: at opDo both show and run, but if protected

then just show

2.5. OBTAINING LSIP 13

showProtected: Run everything and don't show except for
show only protected

showRunProtected: Run everything and don't show except for
run and show rotected

runSafe = unprotected: showRun, protected: show
showProtected = unprotected: run, protected: show
showRunProtected = unprotected: run, protected: showRun

Verbose Mode:
=============

G_verbose=
verbose When Set, verbose format (eg, line nu, time tag, ...)

of Tracing and RunMode are selected.

Force Mode:
=============

G_forceMode=
force When Set, force/overwrite mode of operation

is selected.

Check Mode:
===========

G_checkMode={fast,strict,full}
fast: 1) Skip asserting and consistency checks.

2) Do less than default, invoker will
compensate

strict: Do asserts and consistency checks.
full: 1) Do more than default

2.5 Obtaining LSIP

http://www.neda.com/libre/lpGenesis.sh

2.6 LSIP License

Afero GPL V3.

2.7 LSIP Overview

Take from presentation.

14 CHAPTER 2. OPEN SERVICES MANAGEMENT TOOLS

Part III

Libre Platform Base

15

Chapter 3

Open Platform Libraries

3.1 doLib

The doLib.sh is a place for common features for script that used the seedSubjectAction. This common features
includes:
vis_ls list all of the functions (hence, equivalent to items) inside the itemsFile.
do_list
do_describe describing each items in the itemsFile if opItem_description function

exist within the item.
do_itemActions if the item has a list of itemActions, then it will perform all of them.
doLibExamplesOutput list all of the common examples for the seedSubjectAction script which

include common examples (showMe, seedHelp, ls, list, describe) and
common debugging.

To use this feature, put the following in each of the seedSubjectAction script:

function vis_examples {
typeset doLibExamples=`doLibExamplesOutput ${G_myName}`

cat << _EOF_
EXAMPLES:
${doLibExamples}
--- EVERYTHING ELSE
.....
.....
.....
EOF
}

3.2 visLib

This library function the same as doLib except this lib is for seedActions script.

17

18 CHAPTER 3. OPEN PLATFORM LIBRARIES

3.3 ocp-lib

The ocp-lib loads all of the osmt library. Each of these libraries will be covered in the following sections.

3.4 ocp-general

ocp-general is a collection of several functions which can be used by any scripts. This library will most probably
grow over time to simplify tasks.
Function name convention:

• MA_: mail addressing parsing

• ATTR_: Attribute value parsing

• FN_: File Name Manipulation

• USER_: passwd file related activities

• PN_: Path name

The functions included in this library are:

MA_domainPart Mail address parsing. Print out the domain part. Example:
MA_domainPart vendors@neda.com will output neda.com.

MA_localPart Mail address parsing. Print out the local part. Example: MA_localPart
vendors@neda.com will output vendors.

ATTR_leftSide Attribute value parsing. Print out the left side of the equal sign (=).
Example: ATTR_leftSide variable1=value1 will output variable1.

ATTR_rightSide Attribute value parsing. Print out the right side of the equal sign (=).
Example: ATTR_rightSide variable1=value1 will output value1.

FN_prefix Print out only the basename of a file without the extension. Example:
FN_prefix /opt/public/osmt/bin/mmaQmailHosts.sh will output mmaQ-
mailHosts.

FN_extension Print out only the extension of a basename file. Example: FN_extension
/opt/public/osmt/bin/mmaQmailHosts.sh will output sh.

FN_dirsPart Print out only the directory of a specific file location. Example:
FN_dirsPart /opt/public/osmt/bin/mmaQmailHosts.sh will output /op-
t/public/osmt/bin.

FN_nonDirsPart Print out only the basename of a specific file location. Example:
FN_nonDirsPart /opt/public/osmt/bin/mmaQmailHosts.sh will output
mmaQmailHosts.sh.

FN_fileDefunctMake Make a specific file become no longer active in the system by moving
the file into another file and chmod to 0000. It requires 2 arguments.
First arg is the name of the file that we want to defunct and second arg
is the new name and it should not have existed.

3.4. OCP-GENERAL 19

FN_dirDefunctMake Same as the above except it applies to a directory instead of a file.
FN_FileCreateIfNotThere Create a null file if it does not exist.
FN_dirCreateIfNotThere Create a directory if it does not exist using the mkdir command.
FN_dirCreatePathIfNotThere Create a directory path if it does not exist using mkdir -p command.
FN_fileSymlinkSafeMake Requires 2 arguments: source/origin of a file (should exist)and the target

name. If the target exist, skip the symlink process.
FN_fileSymlinkUpdate Same as FN_fileSymlinkSafeMake except if the target exist, it will remove

the old symlink and make a new one.
FN_fileSafeCopy Required 2 arguments: a source name and a target name. If the target

exist, it will skip the copy process.
FN_fileCopy Same as FN_fileSafeCopy except if the target exist, it will overwrite the

old file. Use with caution.
FN_fileSafeKeep Move a file and rename it with a dateTag extension.
FN_dirSafeKeep Move a directory and rename it with a dteTag extension.
FN_lineIsInFile Required 2 arguments: string to check and the filename. It will return

0 if the string is found in the file specified and 1 otherwise.
FN_lineAddToFile Required 3 arguments: string to check, string to be added, the filename.
FN_textReplace Required 3 arguments: regexp of text to replace, replacement text, and

the filename. The regexp of text to replace has to be in the format of
t̂ext.*$.

FN_textReplaceOrAdd If the text to be replaced exist in the file, it will call FN_textReplace oth-
erwise the replacement text will be added to the file.

FN_fileInstall This is to ensure that we use FSF’s install command. In SunOS the loca-
tion is in /opt/sfw/bin/install.

FN_grep This is to ensure that we use grep command that supports ”-F”, ”-v”, and
”-q”. In SunOS, the location is /usr/xpg4/bin/grep.

FN_egrep This is to ensure that we use egrep command that support ”-v”, ”-q”.
_opDoRunOnly
_opDoShowOnly
_opDoShowRun
_opDo
_opDoAssert
opDoProtectedBegin
opDoProtectedEnd
opDoProtected
USER_isInPasswdFile Return 0 if a user is in the /etc/passwd file.
USER_loginGivenHomeDir Required 1 argument: the path to home directory. If the home directory

is found in /etc/passwd, it will output his/her loginName and return 0
otherwise it will return 1.

USER_nextLoginNameGet ….
PN_fileVerify List information about file.
FN_fileRmIfThere Calling PN_rmIfThere.
PN_rmIfThere If -v is specified, it will enable the verbose mode. You can specified more

than 1 file to be removed.
IS_inList Required 2 arguments: a string to be checked and a list of strings. Return

0 if the string is in the list of strings otherwise return 1.

20 CHAPTER 3. OPEN PLATFORM LIBRARIES

LIST_getLast Get the last argument/string in a list.
LIST_getFirst Get the first argument.
LIST_set
LIST_minus
LIST_setMinusResult
doStderrToStdout Put standard error to standard output.
G_validateOption Required 2 arguments: target and a list. If the target is in the list, it will

set targetIsValid=”TRUE”.
G_abortIfNotSupportedOs Abort the running script if the OS is not supported. The currently sup-

ported OS are SunOS and Linux.
G_abortIfNotRunningAsRoot Abort the running script if the current user is not root.
G_returnIfNotRunningAsRoot Return 1 if the current user is not root.
G_validateRunOS Required 1 argument: a list of OS. If the current OS is in the given list, it

will set isValid=”TRUE” otherwise it will set isValid=”FALSE” and exit.
DOS_toFrontSlash Convert DOS filename to UNIX system filename.
DOS_toBackSlash
RELID_extractInfo Information about product’s release ID
logActivitySeparator
buildAndRecord

3.5 ocp-lineNu

This library contains functions for debugging purposes.

tm_trace Depending on what the trace level is, will print out information for de-
bugging purposes. For more complete information, see section ⁇.

log_event For loging purposes.
eh_problem Give out PROBLEM message and continue.
eh_fatal Give out a FATAL message and exit.

3.6 ocpLibUse

3.7 opRunEnvLib

To setup and verifying the environment configuration on the system.

3.8 opWrappersLib

This script includes these functions:

opNetCfg_paramsGet Required 2 parameters: clusterName and hostName. Given these 2 pa-
rameters, the nedaIPaddr.sh is called and the network setting for this
particular cluster and hostname are set.

i_nedaNetParamsGet Used by the opNetCfg_paramsGet to set all of the network setting
as global variables. These global variables are: opNetCfg_ipAddr,
opNetCfg_domainName, opNetCfg_netmask, opNetCfg_networkAddr,
opNetCfg_defaultRoute.

3.9. ITEMSLIB 21

3.9 itemsLib

itemsLib ia a set of facilities that operate on any item files.

opItem_description Whenever -i describe is executed, it will call opItem_description and this
function will look for iv_descriptionFunction in each of the item in the
itemsFile. If it exist, the description will be printed out.

opItem_selectClusterFiles
opItem_ifAvailableInvoke
opItem_isAvailable It will check whether the item is available to hostMode (by calling

opItem_isAvailableToHostMode) and if it is within the cluster (by calling
opItem_isWithinClusterScope). It will return 0 if everything is correct.

opItem_isAvailableToHostMode
opItem_isAvailableToOs
opItem_isWithinClusterScope Subject variables should be all set (iv_itemScopeVisibleHosts,

iv_itemScopeVisibleClusters, iv_itemScopeHiddenHosts). Returns:

0 if disk within scope and should be acted upon
1 if disk is tagged to be hidden
2 if disk not in the cluster and also not tagged as visible

3.9.1 Visibility Rules

items Visibility

By adding

iv_itemScopeVisibleHosts -- List of hosts outside of the clusters
item is visible to

iv_itemScopeVisibleClusters -- List of clusters, item is visible to
iv_itemScopeHiddenHosts -- List of hosts inside of the clusters

item is visible to

you can then use opItem_isWithinClusterScope to check the visibility of the item.

By adding

iv_itemAvailableToHostModes

you can then use opItem_isAvailableToHostMode.

By adding

iv_itemAvailableToOsType -- matched against opRunOsType
iv_itemAvailableToMachineArch -- matched against opRunMachineArch

you can then use opItem_isAvailableToOs.

22 CHAPTER 3. OPEN PLATFORM LIBRARIES

runMode Visibility

Cluster Visibility

Binary Visibility

3.10 opDoAtAsLib

Chapter 4

Seed Scripts

4.1 seedActions.sh

4.1.1 Description

NAME
seedAction.sh

DESCRIPTION
seedActions.sh is the basis of a tool for grouping
a number of functions within a shell script and allowing
for their execution and maintenance in a consistent way.

A large number of common features are provided by simply
loading seedActions.sh. seedActions.sh integrates itself
with your script in three stages.

Below is the diagram of how this seedActions.sh works:

seedActionsExample.sh | seedActions.sh
|

1 | |
| |
+-------------------+--------------+ Configuration set:

| - opConfig.sh
| | Library load:
| A | - ocp.lib
| | GETOPT

+-------------------+--------------+
2 | |

Default + | |
Mandatory | |
Parameters | |

+-------------------+--------------+
| | Set the user

23

24 CHAPTER 4. SEED SCRIPTS

| B | define parameters
POST | |

+-------------------+--------------+
3 | |

vis_ | |
functions | |

+-------------------+--------------+
| | Execute
| C | tasks
| +

In this description, the routine is:
part 1 called --> part A executed -->
part 2 called --> part B executed -->
part 3 called --> part C executed.

First, mmaExampleActions.sh is calling part 1:

if ["${loadFiles}X" == "X"] ; then
seedActions.sh -l $0 $@
exit $?

fi

As a result, the seedActions.sh is executed and
the first thing that seedActions.sh do is execute Part A:

- load opConfig.sh
- load ocp-lib.sh (OCP Library)
- process GETOPT (get options)

After Part A is executed, mmaExampleActions.sh declare the
default parameter with tags (typeset -t) if any.
This is also known as PRE loading.

typeset -t FirstName=MANDATORY
typeset -t LastName=MANDATORY
typeset -t SubsSelector=""
.....

This is where all of the necessary parameters are set,
including the default and mandatory parameters.

parameter=value from the command line must match a
typeset -t.
The initial value of mandatory variables is MANDATORY

After all the parameters are set, seedActions.sh
executes Part B:

- set all of the user's define parameters.

4.1. SEEDACTIONS.SH 25

After we have all the parameters, part 3 is called
(POST Loading). Part 3 only executed if function
called G_postParamHook exist within the script.

command line "someFunction" maps to function: vis_someFunction

OPTIONS
All scripts base on seedActions.sh get getopts with the
following options:

-T traceLevel Use for debuging purposes -- tracing,
with traceLevel being a number
between 0-9.

-i Run a specific visible function within the
script.

-p Specify the required/default parameters.
parameter=value from the command line must match a
typeset -t. For example:

-p FirstName=Homer ...

-l Specify the file for loading.

-u Gives USAGE Info. The usage info automatically
lists all visible functions without the prefix "vis_".

VISIBLE FUNCTIONS
- The visible functions (indicated by prefix vis_) are internal
functions which are exposed externally.

- It can accept ARGS on command line.

CONVENTIONS
- In every script, vis_help is always put on top.
The idea being that a description of the script
can always be accessed through "-i help" in the
command line.

- Those based on seedActions.sh should end in a category
of actions as a VERB. The most generic form is the verb
Action itself. For example: mmaSendmailAction.sh

- The noArgsHook function will be available in some
of the script.
If a default action is applicable to a script,
the noArgsHook is called, if it exists,
based on the recognition that a default action will be
performed.
If noArgsHook is not specified and the script is run with
no options, then this warning will be displayed:

26 CHAPTER 4. SEED SCRIPTS

"No action taken. Specify options. See -u"

EXAMPLE
Mandatory parameters:

the initial value of mandatory variables is MANDATORY
e.g.
typeset -t FirstName=MANDATORY

In order to force this parameter to be set (hence MANDATORY)
call the opParamMandatoryVerify within the function
that needs this parameter. When opParamMandatoryVerify is
executed, it will check all of the parameters that has initial
value MANDATORY. If it is not set, return error.

Optional parameters:
the optional parameters has initial value other that MANDATORY.

vis_help: the vis_help can always be accessed through "-i help"
in the command line

Example of usage: anyScript.sh -i help
Example of code:

vis_help () {
cat << _EOF_

Put any text here for information related to this script.
EOF

exit 1
}

noArgsHook:
e.g.

noArgsHook="noArgsHook"
noArgsHook() {

If no args, default action or usage

if ["$*X" == "X"]
then
echo "No Defaults Specified"
echo "Specify Options -- See -u for list of visible actions"
usage

fi
}

4.2. SEEDSUBJECTACTION.SH 27

4.1.2 Example

Take a look at mmaExamplesActions.sh

4.2 seedSubjectAction.sh

4.2.1 Description

NAME
seedSubjectAction.sh

DESCRIPTION
seedSubjectAction.sh is the basis of a tool for grouping
a number of functions within a shell script and allowing
for their execution and maintenance in a consistent way.

A large number of common features are provided by simply
loading seedSubjectAction.sh. seedSubjectAction.sh integrates itself
with your script in three stages.

Below is the diagram of how this seedSubjectAction.sh works:

procSubjects.sh.sh | seedSubjectAction.sh | procSubjectItems.main
| |

1 | | |
| | |
+-----------+--------------+ Conf. set: |

	- opConfig.sh
	Library load:
A	- ocp.lib

PRE | | GETOPT |
+-----------+--------------+ |

2 | | |
Default + | | |
Mandatory | | |
Parameters | | |

+-----------+--------------+ |
| | Set the params |
| B | |

POST | | |
+-----------+--------------+ |

3 | | |
do_ | | |
item_ | | |
functions | | |
itemFiles +-----------+--------------+ |
specified here | | |

| +----------------+-------+
| | | procSubjectItems.

28 CHAPTER 4. SEED SCRIPTS

| +----------------+-------+
| | |
| C +----------------+-------+
| | | procSubjectItems. N
| +----------------+-------+
| | |
| | |
| + |

In this description, the routine is:
part 1 called --> part A executed -->
part 2 called --> part B executed -->
part 3 called --> part C executed.

First, seedSubjectActionExample.sh is calling part 1:

if ["${loadFiles}X" == "X"] ; then
seedSubjectAction.sh -l $0 $*
exit $?

fi

As a result, the seedSubjectAction.sh is executed and
the first thing that seedSubjectAction.sh do is execute Part A:

- load opConfig.sh
- load ocp-lib.sh (OCP Library)
- process GETOPT (get options)

After Part A is executed, seedSubjectActionExample.sh declare the
default parameter with tags (typeset -t) if any.
This is also known as PRE loading.

if ["${loadSegment}_" == "PRE_"] ; then
Mandatory parameters
typeset -t VirDomRoot=MANDATORY
typeset -t VirDomTLD=MANDATORY

Optional parameter = default value
typeset -t SiteName=xyzPlus
.....

This is where all of the necessary parameters are set,
including the optional and mandatory parameters.

parameter=value from the command line must match a
typeset -t.
The initial value of mandatory variables is MANDATORY
and the optional parameters become the default value.

After all the parameters are set, seedSubjectAction.sh
executes Part B:

- set all of the user's define parameters.

4.2. SEEDSUBJECTACTION.SH 29

After we have all the parameters, part 3 is called
(POST Loading). Part 3 only executed if function
called G_postParamHook exist within the script.

The setBasicItemsFile is called here. See CONVENTIONS
section for how setBasicItemsFiles works.
The itemsFile are loaded from the procSubjectItems file:

procSubjectItems.<specificCluster>
where procSubjetItems is the corresponding procSubjects.sh,
<specificSite> is one of main, office, public, etc.

When procSubjectItems is executed, itemPre and itemPost
are defined, if there is any.

itemPre is a place where all the default and mandatory
parameters are specified.

itemPost derived defaults.

After the itemsFile is loaded, "subject" and "action"
are defined.

command line "subject" maps to function: item_subject
command line "action" maps to function: do_action
By convention, it calls itemAction_action.

OPTIONS
All scripts base on seedSubjectAction.sh get getopts with the
following options:

-T traceLevel Use for debuging purposes -- tracing,
with traceLevel being a number
between 0-9.

-a Run the specific action. The "action"
automatically lists all the action available
without the "do_" prefix.
Also applies to itemCmd_ as well.

-s Apply the -a "action" to a specific "subject".
The "subject" automatically lists all the subject
available without the "item_" prefix.

-i Run a specific visible function within the
script.

-p Specify the required/default parameters.
parameter=value from the command line must match a
typeset -t. For example:

30 CHAPTER 4. SEED SCRIPTS

-p FirstName=Homer ...

-l Specify the file for loading.

-u Gives USAGE Info. The usage info automatically
lists all visible functions without the prefix "vis_".

CONVENTIONS
- In every script, vis_help is always put on top.
The idea being that a description of the script
can always be accessed through "-i help" in the
command line.

- Those based on seedSubjectAction.sh should end
in the plural of the OBJECT, if there are categories
of actions related to the objects those as verbs come
before the plural of the object.
For example: opDiskDrives.sh or mmaQmailHosts.sh

The seed of the items file is the singular of the fileName
plus Items. For example opDiskDriveItems.sh or mmaQmailHostItems.sh.

- The noArgsHook function will be available in some
of the script.
If a default action is applicable to a script,
the noArgsHook is called, if it exists,
based on the recognition that a default action will be
performed.
If noArgsHook is not specified and the script is run with
no options, then this warning will be displayed:
"No action taken. Specify options. See -u"

- The noSubjectHook function will be available in some
of the script.
This function will be executed if there is no subject
specified.

- The firstSubjectHook and lastSubjectHook are typically
used when the subject is all. Most of the time, it will
be used for printing summary of the itemsFile.

- setBasicItemsFiles procSubjectItems
Here are the flow how setBasicItemsFiles works:
if there is procSubjectItems.main, then add it.
if there is procSubjectItems.clusterName, then add it.

if there is none of the above then
if there is procSubjectItems.site, then add it.

if there is procSubjectItems.otherName, just ignore it.

4.2. SEEDSUBJECTACTION.SH 31

Here is a scenario:
- For example, suppose we have all of these files:
procSubjectItems.main, procSubjectItems.office,
procSubjectItems.home, procSubjectItems.otherCluster
and we are running from an office machine environment
then only procSubjectItems.main and procSubjectItems.office
are loaded and the other are ignored.

- The itemsFile policy:
item_SSSS (SSSS is the subject)
itemPre
iv_specialize
itemPost
itemCmd_

- Built in function:
list -- built in action
all -- built in subject
Example of use in command line:
anyScript.sh -s all -a list
This command will enumerate all the subject item_ entries from
the ItemsFile and list all of the paramaters corresponding to
each subject item_.

EXAMPLE
Mandatory parameters:

the initial value of mandatory variables is MANDATORY
e.g.
typeset -t FirstName=MANDATORY

Optional parameters:

typeset -t FirstName=homer

vis_help:

the vis_help can always be accessed through "-i help"
in the command line
Example of usage: anyScript.sh -i help
Example of code:

vis_help () {
cat << _EOF_

Put any thext here for information related to this script.
EOF

exit 1
}

noArgsHook:

32 CHAPTER 4. SEED SCRIPTS

e.g.

noArgsHook="noArgsHook"
noArgsHook() {

If no args, default action or usage

if ["$*X" == "X"]
then
echo "No Defaults Specified"
echo "Specify Options -- See -u for list of visible actions"
usage

fi
}

Use of parameters in vis_ function:

print ${FirstName} will give result "homer".

ItemsFile Selection:

There are 2 ways to load the procSubjectItems:

1. Automatic ItemsFile Selection

setBasicItemsFiles procSubjectItems

2. Manual ItemsFile Selection

ItemsFile=${opSiteControlBase}/${opSiteName}/procSubjectItems.main

do_ description:

The do_AAA function is the AAA "action" taken to some
"subject" item_.
By convention it calls itemAction_AAA.

itemCmd_ description:

4.2.2 Example

Take a look at mmaExamplesObjects.sh

Bibliography

[1] ” Neda Communications Inc”. ” interactive command modules (icm) and players a framework for cohesive
generalized scripting a model for gui-line user experience ”. Permanent Libre Published Content ”180050”, Au-
tonomously Self-Published, ”July” 2017. http://www.by-star.net/PLPC/180050.

33

http://www.by-star.net/PLPC/180050

	I About Bash-ICM: This Document, The Software And History
	About BASH-ICM
	The Concept Of Interactive Command Modules (ICM)
	Bash-ICMs as a subset of the Python-ICM Framework
	History Of Bash-ICMs and Python-ICMs
	About This Document

	II Concept and Model
	Open Services Management Tools
	Server To Services Transformation
	Open Services Management Tools
	GOALS
	Common Features
	Obtaining LSIP
	LSIP License
	LSIP Overview

	III Libre Platform Base
	Open Platform Libraries
	doLib
	visLib
	ocp-lib
	ocp-general
	ocp-lineNu
	ocpLibUse
	opRunEnvLib
	opWrappersLib
	itemsLib
	Visibility Rules

	opDoAtAsLib

	Seed Scripts
	seedActions.sh
	Description
	Example

	seedSubjectAction.sh
	Description
	Example

