
Extending SON To Clouds AndThings

GOSSONoT: A Generalized Open-Source Self
Organizing Network of Things Platform

Article Format Of Presentation

Document #PLPC-180052
Version 0.5

February 12, 2019

This Document is Available on-line at:
http://www.by-star.net/PLPC/180052

Mohsen BANAN
Email: http://mohsen.1.banan.byname.net/contact

http://www.by-star.net/PLPC/180052
http://mohsen.1.banan.byname.net/contact

Contents

I Overview 2

1 Summary 2

2 Strategy 2

3 Key Differentiators 3

4 Related Documents 3

5 Part Of A Much Bigger Picture – ByStar and BISOS 3

6 About This Document (Presentation/Podcast) 4

7 Document Outline 4

II Generalizing SON For Clouds AndThings 5

8 Obvious Desires – Self Organizing Networks 5

9 About SON In The Telecom Context 5

9.1 Telecom SON Environment: Clean And Standardized Managed Objects 6
9.2 Nokia’s SON Product: EdenNet . 6
9.3 Ericsson’s SON Optimization Manager . 7
9.4 Huawei’s SON Product: SingleSON . 7
9.5 Cisco SON Suite . 7

10 The Equivalent Of SON In Clouds Context 8

11 SON Functions 8

12 Typical Anatomy Of SON Platforms 8

13 Use Of SON Modules In Conjunction With Machine Learning 9

14 Extending SON To Clouds AndThings 9

14.1 Culture Of TelePhants Vs Culture Of Cloud Operators . 10
14.2 Best Of Both Worlds (For TelePhants And Cloud Operators) . 10

ii

III Overview Of GOSSONoT 12

15 Our Goals And Motivations For Extending SON To Clouds AndThings 12

16 About GOSSONoT 12

17 GOSSONoT’s Hour Glass Model 13

18 Scope And Scale Of GOSSONoT 13

19 GOSSONoT As Cloud’s Management Convergence Point 14

20 An Overview Of GOSSONoT Architecture 14

20.1 Main Ingridients Of GOSSONoT Architecture . 14

IV GOSSONoT Software Architecture – Installation And Usage 16

21 GOSSONoT Software Components 16

21.1 Modules Dispatch – Software Ingredients . 16
21.2 Remote Operations – Web Services . 17
21.3 ICM (Interactive Command Modules) – Software Components . 18
21.4 GOSSONoT-Modules Library And Things Adapters Collection – Software Components 19

22 Integrated Software – Installation 19

23 Current Status Of GOSSONoT Software 19

24 GOSSONoT’s Organic Model – Not A Monolithic Paradigm 20

25 Growth Dynamic Of GOSSONoT 20

V GOSSONoT-Modules And Interactive Command Modules (ICMs) 21

26 GOSSONoT-Modules Are Specializations Of Interactive Command Modules (ICMs) 21

27 ICM Software And Documentation 21

28 ICM Framework, Modules And Players 22

VI GOSSONoT-Things-Interfaces And GOSSONoT-Things-Lists 23

iii

29 Abstraction Of Things 23

30 Things-Interfaces: Primary Things-Adapters AndThings-Agents Protocols 23

30.1 Web Services – Remote Operations Interactive Command Modules (RO-ICM) 23
30.1.1 Web Services – Remote Operations Interactive Command Modules (RO-ICM) 24
30.1.2 RO-ICM-Performers As Things-Agents . 24
30.1.3 RO-ICM-Invokers As Things-Adapters . 25

VII Module-Players: GOSSONoT-Modules Execution User Interfaces And Environments 26

31 Execution Modes Of GOSSONoT-Modules 26

32 Module-Players: User Interface For Execution Of GOSSONoT-Modules 26

VIII Integrated Modules Development Environments – Emacs-Blee 27

33 GOSSONoT-Modules Development Environments 27

34 Blee: An Emacs Based Integrated GOSSONoT-Modules Development Environments 27

IX Machine-Learning Enhanced GOSSONoT (MLE-GOSSONoT) 28

35 MLE-GOSSONoT 28

36 Structure Of Machine-Learning Enhanced SON Platforms 28

X Poly-SON-Modules – GOSSONoT-ICMs And Proprietary SON-Modules 29

37 GOSSONoT-Modules Can Support Secondary SON Platforms 29

38 Example Of A Poly-SON Module Running In Two SON Platforms 29

XI Use Case Examples 31

39 Overview Of Scenario Examples 31

40 Self-Configuring: VM Passwords 31

41 Self-Optimizing: IoT – The Home Owner Comes Home 32

iv

42 Self-Healing: Network Performance Monitoring – Links Adjustment 32

XII Next Steps 33

43 Next Steps – Evolving GOSSONoT’s Core 33

44 Additional Modules And Additional Things-Interfaces 33

List of Figures

1 GOSSONoT’s Hour-Glass Model . 13
2 GOSSONoT Architecture Overview . 14
3 ICM Framework, Modules And Players . 22
4 Web Services Interactive Command Module (WS-ICM) Using Swagger Code Generators 24
5 Machine-Learning Enhanced GOSSONoT (MLE-GOSSONoT) . 28
6 Poly-SON-Modules and Poly-SON-Module Players . 30

1

Part I

Overview

1 Summary

Lessons Learned From SON In Telecom’s Context:

Our experience with Self-Organizing Networks (SON) in Telecom’s context over the past decade has demonstrated
that very large networks can be successfully managed when:

• Interfaces to network elements are well defined (OSS and MOs).

• Concept Of SON-Modules Is Widely Well Understood And Considered Central.

• Proper SON-Platforms Are Deployed Through Out The Network.

• Systems Management Efforts Are Focused On Consistent SON-Modules Development.

Extending SON:

These Lessons Can Be Applied To Managing Other Large Networks (Clouds).

Notes:

2 Strategy

Pillars:

• Generalize the concept of SON-Modules such that All Systems Management activities can be implemented as
SON-Modules.

• Use Generalized SON-Modules To Also Implement Network-Element-Adapters.

• Provide An Open-Ended Framework For Development And Execution Of SON-Modules

Realization/Implementation:

Our Interactive Commands Module (ICM) model allows for any type of Systems Management processing.
GOSSONoT is a powerful open-ended modules execution framework.

Notes:

2

3 Key Differentiators

Unified, Converged, Simplified And Open-Sourced

Unlike Most Other Cloud Management Approaches, GOSSONoT:

• Is based on the real experience of SON.

• Is purely based on Python-ICMs which are cohesive and unified.

In Contrast:

Other approaches to Cloud Management usually bloat, diverge and implode.

Notes:

4 Related Documents

Interactive Command Modules (ICM) and Players A Framework For Cohesive Generalized Scripting
http://www.by-star.net/PLPC/180050 — [4]

Remote Operations Interactive Command Modules (RO-ICM) Best Current (2019) Practices For Web
Services Development http://www.by-star.net/PLPC/180056 — [3]

AGeneralized Swagger (OpenAPI) CenteredWeb Services InvocationsAndTesting Framework http://www.by-
star.net/PLPC/180057 — [1]

Extending SON To Clouds AndThings GOSSONoT: A Generalized Open-Source Self Organizing Net-
work of Things Platform http://www.by-star.net/PLPC/180052 — [2]

Notes:

5 Part Of A Much Bigger Picture – ByStar and BISOS

GOSSONoT is Part Of A Much Bigger Picture.

GOSSONoT Is Part Of: The Libre-Halaal ByStar Digital Ecosystem And Part Of: BISOS: ByStar Internet Services OS

3

http://www.by-star.net/PLPC/180050
http://www.by-star.net/PLPC/180056
http://www.by-star.net/PLPC/180057
http://www.by-star.net/PLPC/180057
http://www.by-star.net/PLPC/180052
http://www.by-star.net
http://www.by-star.net/PLPC/180047

GOSSONoT is primarily being used and developed in that context.

Notes:

6 About This Document (Presentation/Podcast)

You can obtain this document at its access page: http://www.by-star.net/PLPC/180052
where it is available in multiple forms and multiple formats:

• Article/Book Form: Best suited for cover-to-cover reading (pdf).

– Pdf Format: Best suited for printing and cover-to-cover reading.
– HTML/Web Format: Best suited for Web reading and cross referencing.

• Presentation Form: Best suited for quick scan – with live URLs –(pdf).

– Screencast: A slide oriented voice-over narrated presentation (Reveal.js Based)
– PDF Slides: Best suited for printing of the slides (Beamer Generated)
– HTML Slides And Notes: Slide and notes in html format (Beamer+HaVeA Generated)
– PDF Slides and Notes: Best suited for printing of presentation notes (Beamer Generated)

We can benefit from your feedback. Please let us know your thoughts. You can send us your comments, corrections
and criticisms to mailto:feedback@mohsen.1.banan.byname.net

7 Document Outline

• Generalizing SON For Clouds And Things

• Overview Of GOSSONoT

• GOSSONoT Software Architecture – Installation And Usage

• GOSSONoT-Modules And Interactive Command Modules

• GOSSONoT-Things-Interfaces And GOSSONoT-Things-Lists

• GOSSONoT-Modules Execution User Interfaces And Environments

• Use Case Examples

Notes:

4

http://www.by-star.net/PLPC/180052
mailto:feedback@mohsen.1.banan.byname.net

Part II

Generalizing SON For Clouds AndThings

8 Obvious Desires – Self Organizing Networks

Obvious Desires

Self Organizing Networks

Any Operator Of Any Network Wants Her Network To Be:

• Self-Configuring

• Self-Optimizing

• Self-Healing

Wishes Vs Reality

But, that is mostly fantasy and usually involves more work than imagined. Is it reasonable to abstract a solution that
spans multiple network types?

Can SON Be Extended?

The concept of Self Organizing Networks (SON) originated in the well structured and standardized Cellular-Mobile
Networks. In that scope, SON is very real. Are those same concepts and models applicable to Clouds?

Notes:

9 About SON In The Telecom Context

In The Telecom Context, SON Is Very Real:

The idea and concepts of Self Organizing Networks (SON) started to be formalized in 3GPP at around 2006. First
generation of SON products started to appear in 2009.
All major Telecom equipment manufacturers (Nokia, Ericsson, Huawei) have a SON product offering. Cisco also
have a strong product offering. SON products are usually Multi-Technology/Multi-Layer (2G/3G/4G/5G) and Multi-
Vendor with respect to OSS infrastructure interfaces (Nokia, Ericsson, Huawei).
Every carrier (ATT, T-Mobile, Orange, Verizon) has a SON Solution.

Notes:

5

9.1 Telecom SON Environment: Clean And Standardized Managed Objects

Telecom SON Environment:

Clean And Standardized Managed Object Definitions Have Been In Place

Telecom’s SON Builds On Formalized Definitions Of Managed Objects(MOs):

X.700 – CommonManagement Information Protocol (CMIP) – Started to define the Telecom’s NetworkManagement
model with formal Managed Objects in 1988 (blue-books).
3GPP has kept that formal standardized tradition for 3G, 4G and 5G in the well protected TelePhants walled-garden
environment.
Operations Support Systems interoperability initiative (OSSii) is the foundation of SON.

MOs As SON Enablers

It is this formal definition of Managed Objects that has made SON successful.

Notes:

9.2 Nokia’s SON Product: EdenNet

Nokia SON Product:

EdenNet

https://networks.nokia.com/solutions/edennet

• Multi-Technology: 2G/3G/4G/5G

• Multi-Vendor OSS Interfaces: Nokia, Ericsson, Huawei

• Python Based

• SON-Modules-Platform Model

• Large Library Of Proprietary SON-Modules

Notes:

6

https://networks.nokia.com/solutions/edennet

9.3 Ericsson’s SON Optimization Manager

https://www.ericsson.com/us/ourportfolio/network-management/son-optimization-manager

• Multi-Technology: 2G/3G/4G/5G

• Multi-Vendor OSS Interfaces

• “Use-Case” Paradigm

Notes:

9.4 Huawei’s SON Product: SingleSON

Huawei SON Product:

SingleSON

http://carrier.huawei.com/en/products/wireless-network/subsolution-singleoss/singleson

• Multi-Technology: 2G/3G/4G/5G

• Multi-Vendor OSS Interfaces

Notes:

9.5 Cisco SON Suite

https://www.cisco.com/c/en/us/products/wireless/son-suite/index.html

• Multi-Technology: 2G/3G/4G/5G

• Multi-Vendor OSS Interfaces

• Model: SON-Apps – Modules – Use Cases

• Large Library Of SON Applications

• Also supports Packet core, ANDSF.

Notes:

7

https://www.ericsson.com/us/ourportfolio/network-management/son-optimization-manager
http://carrier.huawei.com/en/products/wireless-network/subsolution-singleoss/singleson
https://www.cisco.com/c/en/us/products/wireless/son-suite/index.html

10 The Equivalent Of SON In Clouds Context

• A Whole Lot Of Standalone And Non-Integrated Open-Source Packages (“Management Components”) That
Are Not Made To Fit Together.

• Each cloud provider tries to integrate these components.

• Lack of standardization at Managed Objects level.

• Only basic commonality and standardization at Linux and distros level

• No equivalent to SON Modules

Notes:

11 SON Functions

SON functionalities are commonly divided into three groups:

• Self-configuration functions: Network elements and systems are to conform to the “plug-and-play” paradigm.

• Self-optimization functions: Network elements and systems are to be “monitored” and “adjusted” towards
optimum performance.

• Self-healing functions: When network elements and systems become inoperative ormis-perform, fault-management
and self-healing mechanisms aim at reducing the impacts from the failure. For example, by re-routing traf-
fic and re-adjusting load balancers. Identifying failures in a timely manner is primary goad of Self-healing
functions.

Notes:

12 Typical Anatomy Of SON Platforms

SON Platforms typically have a number of common characteristics and features:

• A unified processing language – Often Python.

• A consistent set of network elements interfaces and systems interfaces – Often abstracted as Things-Adapters
/ Things-Interfaces.

• A “SON-Modules-Development Framework” with which monitoring and adjusting functionality can be im-
plemented – using Things-Adapters.

8

• A “SON-Modules-Dispatch Framework” functioning as a user-interface for triggering execution of SON-Modules.

• A “SON-Modules-Execution Framework” throughwhich large scale parallel execution of SON-Modules isman-
aged. For Audit-Control purposes full information about each instance of execution is kept.

• A “SON-Modules-Results-Analysis Framework” through which visualization of results is addressed.

Notes:

13 Use Of SON Modules In Conjunction With Machine Learning

SON Platforms are often used in conjunction with specialized machine-learning engines.

• SON-Modules Are Used To Monitor Network Elements And Systems And Extract Relevant Information

• The Extracted Information Is Fed To The “Big Data” Platform

• Machine-Learning Engines process the SON Extracted Information And Identify Improvements.

• SON-Modules Are Used To Apply The “Adjustments”.

Notes:

14 Extending SON To Clouds AndThings

SON (Self-Organizing Network) has thus far:

• Been limited to the realm of TelePhants (Telecom Elephants)

TelePhants Operators: Verizon, AT&T, T-Mobile, Sprint, Orange
TelePhants Suppliers: Nokia, Ericsson, Huawei, Cisco

It is possible to extend SON such that its “Managed Objects” are “Abstract Things” which include Cloud’s network
elements and systems and IoT entities.

Notes:

9

14.1 Culture Of TelePhants Vs Culture Of Cloud Operators

Culture Of TelePhants and Culture Of Cloud Operators often stand separate and distinct, even when an organization
has both.

Notes:

Culture Of TelePhants (Caricatured)

Culture Of TelePhants – Caricatured

• Old School – TelePhants Operators Remain Dumb, Fat And Happy – TelePhant Suppliers provide the technol-
ogy and do much of the work under contract. A Convenient Milk and Be-Milked Arrangement.

• Co-Opetition –Through 3GPP things arewell standardized and remain inside the proprietary collectivewalled-
garden. Little is re-invented technology moves forward as a collective.

Notes:

Culture Of Cloud Operators (Caricatured)

Culture Of Cloud Operators – Caricatured

• New School – Many Cloud Owners are both Cloud Operators and Cloud Technology Suppliers. Dynamics are:
trendy, chaotic, fast-moving, re-inventive, unorganized and inconsistent.

• Private Walled Gardens: Google, Facebook, Amazon, Microsoft, etc; keep re-inventing their own infrastruc-
tures. Much Open-Source is bastardized. Late and little Open-Source is given back. After the fact standard-
ization happens at IETF. Things move fast but often go side ways.

Notes:

14.2 Best Of Both Worlds (For TelePhants And Cloud Operators)

There are many lessons that Cloud Operators can learn from TelePhants:

10

Build On SON’s Proven Success

• Identify SON’s model as a universal foundation for Cloud Management.

There are many lessons that TelePhants can learn from Cloud Operators:

Recognize The Extended Scope Of SON

• TelePhant Operators can do a whole lot on their own with the right Open-Source Platforms.

• GOSSONoT allows for SON to be applied to their entire network – if Radio-Heads could see beyond RAN.

Notes:

11

Part III

Overview Of GOSSONoT

15 Our Goals And Motivations For Extending SON To Clouds AndThings

Our Goals And Motivations

For Extending SON To Clouds And Things

Based on the lessons learned from the experience of the past decade with SON in the Telecom’s context and the
availability of large and potent relevant Open-Source components, we want to:

• Build GOSSONoT: A Modules Oriented Open-Source SON-Platform

• Develop A Large Collection OfThings-Adapters andThings-Agents (Things-Interfaces) For Network-Elements
And Systems Within Clouds and IoT.

• Develop A Rich Library Of SON-Modules That Use Things-Interfaces to Monitor, Optimize and Heal Things.

• Develop A Set Of SON-Modules That Can Feed Corresponding Machine-Learning Engines.

• Develop A Set Of SON-Modules That Can Act On Behalf Of Corresponding Machine-Learning Engines To
Adjust Things.

Notes:

16 About GOSSONoT

About GOSSONoT

Open-Source + SON + Cloud + IoT

GOSSONoT (Generalized Open-Source Self-Organizing Network of Things) Is A Platform That Is:

• Purely Implemented In Python.

• Purely Based On Free and Open Source Software And Services (FOSSS).

• Implements The SON-Modules Model Based On SON’s Telecom Experience.

• Is Designed For Web-Scale.

• Can Be Used To Manage Cellular-Mobile Entities and Cloud Entities And IoT Entities in an expandable model.

Notes:

12

17 GOSSONoT’s Hour Glass Model

Cmnd-Line ICM
Blee GUI-Line
Flower-Celery

 RO-ICM (WebSvcs)

ICM Players
Modules Framework
Execution Engines

GOSSONoT ICM
 Apps & Modules

Things Adapters

NETCONF
SNMP
RO-ICM
REST

MQTT
SSH
Virsh

Linux
Hosts

Routers

Hosts/
Apps

TO-ICMs

 M
ac

hi
ne

 L
ea

rn
in

g
–

IC
M

s

BxE ICMs

 B
IG

 D
a t

a
(B

ig
 D

a t
a

IC
M

s)

Bash/Python

VMs

IoT

 Of

Interactive Command Modules (ICM)

 Hour Glass Model

 Resulting into

Lots of Modules/Apps
 Consistently
 Controlling

 Lots of Things

V
isualiz ation – IC

M
s

 GOSSONoT

Systems Management Framework

Things Agents

Figure 1: GOSSONoT’s Hour-Glass Model

Notes:

18 Scope And Scale Of GOSSONoT

Scope:

• All Linux Based Network Elements And Systems Within A Cloud

• All Management Aspects: Configuration, Optimization, Fault Detection and Healing

Scale:

SON’s model, architecture and implementations have proven to scale in largest Telecom operator’s networks.

Notes:

13

19 GOSSONoT As Cloud’s Management Convergence Point

Scope and scale of GOSSONoT presents it as a “Convergence Point” for all systems management activities of a Cloud.
Over time all ad-hoc scripts and isolated management functions can be brought to become GOSSONoT-Modules and
GOSSONoT-Apps.

Notes:

20 An Overview Of GOSSONoT Architecture

Ericsson OSS

SONTarget
WS Interface

Target OSS Data Store

Python Target OSS
Bindings (Local API)

Nokia OSS

Telecom-SON Platforms

Things Interfaces/Adapters

Son Adapter

Net Elements
NetConf Agent

...

Son Adapter

Machine-Learning-Enhanced
GOSSONoT

GOSSONoT Architecture Overview

Apps/Hosts

GOSSONoT
ML-Monitor
 Modules

GOSSONoT
ML-Adjust
 Modules

M
A
C
H
I
N
E

L
E
A
R
N
I
N
G

E
N
G
I
N
E

B
I
G

D
A
T
A

P
L
A
T
F
O
R
M

Remote-Operations
ICM-Performer

Agent

SON SDK: Remote APIRO-ICM
Invoker Adapter NetConf AdapterI

GOSSONoT-Modules Collection

GOSSONoT Modules GOSSONoT Modules

ICM Library

Flower

Cellery

RabbitMq

Flower-Cellery GOSSONoT Modules Player

BLEE
GOSSONoT Modules Player

Figure 2: GOSSONoT Architecture Overview

Notes:

20.1 Main Ingridients Of GOSSONoT Architecture

As shown in the preview figure, GOSSONoT architecture consists of:

• GOSSONoT-Modules

• GOSSONoT-Modules-Player

• GOSSONoT-Apps

14

• GOSSONoT-Things-Adapters

• GOSSONoT-Things-Agents

• GOSSONoT-Things-Proxies

• Machine-Learning-Enhanced-GOSSONoT

Notes:

15

Part IV

GOSSONoT Software Architecture – Installation And
Usage

21 GOSSONoT Software Components

• Modules Dispatch Sub-System

• Remote Operations – Web Services Sub-System

• Modules (ICM and GOSSONoT) Framework – Module Players And Development Environment

• GOSSONoT-Modules Library

• Things-Interfaces Collection – Things-Adapters and Things-Agents

Notes:

21.1 Modules Dispatch – Software Ingredients

GOSSONoT-Modules Dispatch (1 of 2)

Software Components

Flower: Celery monitoring tool

Celery Flower is a tool for monitoring celery tasks and workers.
https://flower.readthedocs.io/en/latest/ – https://github.com/mher/flower

pip install flower

Celery: Distributed TaskQueue

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time
operation, but supports scheduling as well.
http://www.celeryproject.org/

pip install celery

16

https://flower.readthedocs.io/en/latest/
https://github.com/mher/flower
http://www.celeryproject.org/

Notes:

GOSSONoT-Modules Dispatch (2 of 2)

Software Components

RabbitMQ: Message Broker

RabbitMQ is an intermediary for messaging. It gives your applications a common platform to send and receive
messages.
https://www.rabbitmq.com/

sudo apt-get install rabbitmq-server

Notes:

21.2 Remote Operations – Web Services

Remote Operations – Web Services – (1 of 2)

Software Components

Swagger – OpenAPI: Automating And Formalizing REST APIs Creation And Consumption

Swagger is a set of tools built around the OpenAPI Specification that can help you design, build, document and
consume REST APIs.
https://swagger.io/docs/specification/about/

git clone https://github.com/swagger-api/swagger-codegen

Bravado: Automated REST Client

Bravado is a python client library for Swagger 2.0 services. It aims to be a complete replacement to swagger codegen
for invokers.
https://github.com/Yelp/bravado

pip install bravado

17

https://www.rabbitmq.com/
https://swagger.io/docs/specification/about/
https://github.com/Yelp/bravado

Notes:

Remote Operations – Web Services – (2 of 2)

Software Components

Authlib: Python library For building OAuth

JWS, JWK, JWA, JWT are supported.
https://authlib.org/

pip install Authlib

Notes:

21.3 ICM (Interactive Command Modules) – Software Components

ICM (Interactive Command Modules) (1 of 2)

Software Components

ICM: Interactive Command Modules Unified Model

A Framework For Cohesive Generalized Scripting. A Model For GUI-Line User Experience.
http://www.by-star.net/PLPC/180050

pip install unisos.icm

RO-ICM: Remote Operations Interactive Command Modules

ICMs can be auto-converted to become invokable as web services.
http://www.by-star.net/PLPC/180056

pip install unisos.mmwsIcm
pip install roPerf

Notes:

18

https://authlib.org/
http://www.by-star.net/PLPC/180050
http://www.by-star.net/PLPC/180056

21.4 GOSSONoT-Modules Library AndThings Adapters Collection – Software Components

ICM (Interactive Command Modules) (1 of 2)

Software Components

ICM: Interactive Command Modules Unified Model

A Framework For Cohesive Generalized Scripting. A Model For GUI-Line User Experience.
http://www.by-star.net/PLPC/180052

pip install bisos.gossonot

Notes:

22 Integrated Software – Installation

There are several different ways of installing GOSSONoT.

The most convenient way is use bisos.bootstrap to create a fresh VM with all components in place and integrated.

Notes:

23 Current Status Of GOSSONoT Software

GOSSONoT’s proof-of-concept and prototyping date back to 2010

First alpha public release of GOSSONoT was in 2017.

GOSSONoT is being currently used and developed in The Libre-Halaal ByStar Digital Ecosystem.

At this time GOSSONoT should only be viewed as an early alpha release. Incremental public release will be made
publicly available.

Notes:

19

http://www.by-star.net/PLPC/180052

24 GOSSONoT’s Organic Model – Not A Monolithic Paradigm

GOSSONoT is architected to be a set of collaborative and loosely tied components. We avoid themonolithic paradigm.

What ties everything together are the following:

• The Pure Python Strategy

• Use Of Only Open-Source Core Components

• ICM Centered And ICMs Everywhere Strategy

• Unix Philosophy

GOSSONoT is designed to be ever growing.

Notes:

25 Growth Dynamic Of GOSSONoT

GOSSONoT is based on an open-ended design. We anticipate that it will be used in ways that we can not foresee.
Obvious growth areas include:

• GOSSONoT-Modules – ICMs

• Things-Interfaces Pairs: Things-Adapters andThings-Agents –And Particularly Remote-Operations-ICMbased
Things-Adapters

• GOSSONoT-Modules and ICM Players and GOSSONoT-Apps

• Interfaces and Integrations With Machine-Learning Enhancements

Notes:

20

Part V

GOSSONoT-Modules And Interactive Command
Modules (ICMs)

26 GOSSONoT-Modules Are Specializations Of Interactive Command Mod-
ules (ICMs)

GOSSONoT’s Generecities And Universalities Are Based On ICMs

ICMs are general purpose “Commands” that contain within themselves full information about the format and struc-
ture of their inputs and outputs.
On demand, ICMs can report their input and output structures.
ICMs contain a set of (usually related) Commands that are only limited by Python and available libraries.

Notes:

27 ICM Software And Documentation

ICM Software

https://github.com/unisos-pip/icm

pip install unisos.icm

ICM Documentation

Unified Python Interactive Command Modules (ICM) and ICM-Players A Framework For Develop-
ment Of Expectations-Complete Commands A Model For GUI-Line User Experience http://www.by-
star.net/PLPC/180050 — [4]

Notes:

21

https://github.com/unisos-pip/icm
http://www.by-star.net/PLPC/180050
http://www.by-star.net/PLPC/180050

28 ICM Framework, Modules And Players

Common Facilities Library (logging, tracing, exception handling, etc)
pip install unisos.ucf

Interactive Commands Module Library
pip install unisos.icm

ICM Specialization Library-1
(e.g. BxO Lib)

ICM Specialization Library-N
(e.g. GOSSONoT Lib)

Direct-Operations ICMs

Flower-Celery
ICM-Player

Blee
ICM-Player

 Interactive Command Modules (ICM) And Players

Modules

Module-Players

Modules Specialization

Modules Framework

Foundational
Facilities

Figure 3: ICM Framework, Modules And Players

Notes:

22

Part VI

GOSSONoT-Things-Interfaces And
GOSSONoT-Things-Lists

29 Abstraction Of Things

• Manageable Things with Things-Interfaces

– Things-Adapters (RO-ICM-Invoker)
– Things-Agent (RO-ICM-Performer)

• Things-Lists

– Things-Interfaces-List
– Things-Interfaces-Parameters

Notes:

30 Things-Interfaces: Primary Things-Adapters And Things-Agents Proto-
cols

• Web-Services ICMs – (Swagger Based RO-ICM-Invoker RO-ICM-Performer)

• SNMP

• NETCONF

• SSH

• MQTT (IoT)

Notes:

30.1 Web Services – Remote Operations Interactive Command Modules (RO-ICM)

Direct Operations Interactive Command Modules (DO-ICM)

We call an ICM that invokes local operations (DO-ICM)

23

Remote Operations Interactive Command Modules (RO-ICM)

When desired a DO-ICM can be auto-converted to a Remote Operations ICM. Both sides (Performer and Invoker)
are auto-generated.

Notes:

30.1.1 Web Services – Remote Operations Interactive Command Modules (RO-ICM)

 Web Services Interactive Command Modules (ws-icm) Code Generators & Libraries

Interactive Command Module
 (ICM)

Python ICM Callers

Blee
ICM-Player

JS
ICM-Player

WS-ICM
Performer
(Generated)

WS-ICM
Invoker
(Bravado)

CLI-ICM-IF

CLI-Rinvoker

Python WS-ICM
 App

JS
Swagger-UI

1

2

3

4

ICM Framework
And Modules Libs

Swagger
Specification

Figure 4: Web Services Interactive Command Module (WS-ICM) Using Swagger Code Generators

Notes:

30.1.2 RO-ICM-Performers As Things-Agents

RO-ICM Performer Software

https://github.com/bisos-pip/mmwsIcm

pip install bisos.mmwsIcm

24

https://github.com/bisos-pip/mmwsIcm

RO-ICM Performer Documentation

Remote Operations Interactive Command Modules (RO-ICM) Best Current (2019) Practices For Web
Services Development http://www.by-star.net/PLPC/180056 — [3]

Notes:

30.1.3 RO-ICM-Invokers As Things-Adapters

RO-ICM Invoker Software

https://github.com/bisos-pip/mmwsIcm

pip install bisos.mmwsIcm

RO-ICM Invoker Documentation

AGeneralized Swagger (OpenAPI) CenteredWeb Services InvocationsAndTesting Framework http://www.by-
star.net/PLPC/180057 — [1]

Notes:

25

http://www.by-star.net/PLPC/180056
https://github.com/bisos-pip/mmwsIcm
http://www.by-star.net/PLPC/180057
http://www.by-star.net/PLPC/180057

Part VII

Module-Players: GOSSONoT-Modules Execution
User Interfaces And Environments

31 Execution Modes Of GOSSONoT-Modules

There are 3 different models for executing GOSSONoT-Modules:

• Ephemera Execution Model – Development And Testing

• Audit Trailed Execution Model

• Parallel Audit Trailed Execution Model

Notes:

32 Module-Players: User Interface For Execution Of GOSSONoT-Modules

GOSSONoT-Modules (ICM-Modules) are designed to self contain all user-interface related information. At this time,
three types of Module-Players have been implemented

• Command-Line Players

• Blee-Player

• Flower-Celery

Notes:

26

Part VIII

Integrated Modules Development Environments –
Emacs-Blee

33 GOSSONoT-Modules Development Environments

Poly-SON-Modules

GOSSONoT-Modules Development Environments

GOSSONoT-Modules are Python Code.
Any Python IDE (Interactive Development Environment such as: Emacs, pyCharm, sublime, eclips, Visual Studio
Code, etc. can be used to develop GOSSONoT-Modules/ICMs.
We have enhanced Emacs’s python development environment to be fully aware of GOSSONoT-Modules. We call
that flavor of Emacs python development environment: Blee.

Notes:

34 Blee: An Emacs Based Integrated GOSSONoT-Modules Development En-
vironments

Blee is a GOSSONoT-Modules/ICMs Integrated Development Environment that supports:

• A rich ICMsTemplates Inclusion Library – based on yasnippet https://www.emacswiki.org/emacs/Yasnippet

• A rich ICMsmacro support library – based on org-mode dblock https://orgmode.org/manual/Dynamic-blocks.
html

• Blee ICM-Player – Allows for interactive specification of Things-Lists, ICM-Params, ICM-Args for ICM exe-
cution.

Notes:

27

https://www.emacswiki.org/emacs/Yasnippet
https://orgmode.org/manual/Dynamic-blocks.html
https://orgmode.org/manual/Dynamic-blocks.html

Part IX

Machine-Learning Enhanced GOSSONoT
(MLE-GOSSONoT)

35 MLE-GOSSONoT

GOSSONoT can be enhanced by Machine-Learning capabilities.
The interactions betweenGOSSONoT andMachine-Learning engines are accommodated by two classes of GOSSONoT-
Modules.

• GOSSONoT-Machine-Learning-Monitor-Modules

• GOSSONoT-Machine-Learning-Adjustment-Modules

Notes:

36 Structure Of Machine-Learning Enhanced SON Platforms

MLE-GOSSONoT: Machine-Learning Enhanced GOSSONoT

S
che

d uler E
xe

cu
t ion

 T
im

e P
a te

rn

Big Data Platform and Machine-Learning EngineT
IIM

I – Targets A
n

d A
ctionP

aram
s

NOTIFY Module

ADJUST Module

MONITOR Module

PROCESS Module

Captures

Reports – Visulaization

Corrections – Optimizations

Human Notifications

Figure 5: Machine-Learning Enhanced GOSSONoT (MLE-GOSSONoT)

Notes:

28

Part X

Poly-SON-Modules – GOSSONoT-ICMs And
Proprietary SON-Modules

37 GOSSONoT-Modules Can Support Secondary SON Platforms

Poly-SON-Modules

GOSSONoT-Modules Can Support Secondary SON Platforms

For Python Based Modules Oriented SON Platforms, GOSSONoT-Modules can be enhanced to also run in Secondary
SON Platforms.
In such conditions, we call that module “A Poly-SON-Module”.
Developing SON-Modules as Poly-SON-Modules provide many benefits where the strength and special features of
both platforms can be used.
Such an approach also provides additional strategic options tomodule developers for transitioning from one platform
to another.

Notes:

38 Example Of A Poly-SON Module Running In Two SON Platforms

29

Poly-SON-Modules and Poly-SON-Module-Players

EdenNET Native-SON-Modules

Closed-Source
SON Modules

Custom
Open-Source
SON-Modules

EdenNET SON Platform
 (Nokia Proprietary)

EdenNET OSS Interfaces

 EdenNET Web-UI

EdenNET OSS Interfaces

Modules

Module
Players

GOSSONoT Platform
 (Open-Source)

GOSSONoT Command-Line Interface
 Modules Configure, Dispatch
 Monitor and Audit-Trail

 GOSSONoT Web-UI
Modules Configure, Dispatch
Monitor and Audit-Trail

 GOSSONoT Poly-SON-Modules

Custom
Open-Source
Poly-SON-Modules

 Poly-SON-Modules:

 1) Can be deployed with Eden-NET SON Web-UI
 – As Native-SON-Modules

 2) Can be executed on command-line of
 GOSSONoT Platform

 3) Can be deployed with GOSSONoT Web-UI

(1) (2)(3)

 GOSSONoT Platform:
 - Executes Poly-SON Modules. Operates in
 parallel and in addition to Secondary SON Platform.

 - Uses the Secondary SON Platform’s OSS Interface.

 - Provides full control to modules
 (unrestricted by Secondary SON Platform).

 - Is Completely Open-Source and

 Independently enhanceable by Anyone.

 - Allows for development of GOSSONoT-Apps
 (in addition to GOSSONoT-Modules).

Figure 6: Poly-SON-Modules and Poly-SON-Module Players

Notes:

30

Part XI

Use Case Examples

39 Overview Of Scenario Examples

Main functional areas of SON are:

• Self-Configuring: Configurations Management

• Self-Optimizing: KPI Monitoring, Parameter Adjustment

• Self-Healing: Monitor, Process, Notify, Adjust

As examples we now apply these to GOSSONoT’s very different things (VMs, IoTs, Networks).

• Self-Configuring – After VM creations, verify/set consistent passwords on large number of VMs.

• Self-Optimizing – Before coming home, the owner of the house indicates that he is on his way home.

• Self-Healing – Layer 3 information indicates failures, other network interfaces are used for access and routing
purposes.

It is the consistency and cohesion of these different example scenarios that demonstrates the power and value of
GOSSONoT.

Notes:

40 Self-Configuring: VM Passwords

• List Of VMs to be subjected to configurations is specified as Things-List – as an example see: https://
github.com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/ts-librecenter-localhostIcm.
py

• List of Parameters to be configured and the rules for configuration are – as an example see: https://github.
com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/bxpUsageParamsIcm.py

• The appropriate GOSSONoTConfigurationModule is invokedwith the selectedThings-List andThings-Params-
List

Notes:

31

https://github.com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/ts-librecenter-localhostIcm.py
https://github.com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/ts-librecenter-localhostIcm.py
https://github.com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/ts-librecenter-localhostIcm.py
https://github.com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/bxpUsageParamsIcm.py
https://github.com/bisos-pip/gossonot/blob/master/dev/bisos/gossonot-base/bxpUsageParamsIcm.py

41 Self-Optimizing: IoT – The Home Owner Comes Home

• Home Owner Signals To His GOSSONoT’s “Home-Management-Module” That He Is On His Way Home.

• Home Owner’s Home Arrival Time is estimated.

• Current Home Temperature And Temperature Adjustment Rates And Desired Temperature Are Determined.

• Home-Management-GOSSONOT-Module determines when to turn on the furnace.

• When the Home-Owner’s Lactation is determined to be close enough to the house by the Home-Management-
GOSSONoT-Module, additional driveway lights are turned on and the Garage Door is opened.

Such a prototype of a Home-Management-GOSSONoT-Module exists. It can be considered autonomous and privacy-
oriented as the Home-Owner “owns” the Home-Management-GOSSONoT-Module as well as his house and the things
in his house.

Notes:

42 Self-Healing: Network Performance Monitoring – Links Adjustment

• A large number of hosts are being instrumented with a GOSSONoT-Things-Agent in the form of a RO-ICM-
Performer which gather network performance results to different destinations.

• A GOSSONoT-Module through a corresponding GOSSONoT-Things-Adapter (RO-ICM-Invoker) receives the
network performance information from that large number of hosts.

• Based on that, the GOSSONoT-Module then can identify failures and work towards Root-Cause-Analysis
(RCA) and “Adjust” appropriate nodes by instructing them through the GOSSONoT-Things-Adapter to use
different links.

Notes:

32

Part XII

Next Steps

43 Next Steps – Evolving GOSSONoT’s Core

The Core Of GOSSONoT (ICM, RO-ICM, Model Of Things) is being developed and maintained by a small tight team.

If you have any ideas for improvements and enhancements let us know.

Notes:

44 Additional Modules And Additional Things-Interfaces

As you use GOSSONoT and develop new Things-Interfaces and Modules, we can add them to the common GOS-
SONoT library. Please let us know.

Notes:

References

[1] ” Mohsen BANAN ”. ” a generalized swagger (openapi) centered web services testing and invocations framework
”. Permanent Libre Published Content ”180057”, Autonomously Self-Published, ”December” 2018. http://www.
by-star.net/PLPC/180057.

[2] ” Mohsen BANAN ”. ” extending son to clouds and things gossonot: A generalized open-source self organiz-
ing network of things platform ”. Permanent Libre Published Content ”180052”, Autonomously Self-Published,
”December” 2018. http://www.by-star.net/PLPC/180052.

[3] ” Mohsen BANAN ”. ” remote operations interactive command modules (ro-icm) best current (2018) practices
for web services development ”. Permanent Libre Published Content ”180056”, Autonomously Self-Published,
”September” 2018. http://www.by-star.net/PLPC/180056.

[4] ” Neda Communications Inc”. ” interactive command modules (icm) and players a framework for cohesive
generalized scripting a model for gui-line user experience ”. Permanent Libre Published Content ”180050”, Au-
tonomously Self-Published, ”July” 2017. http://www.by-star.net/PLPC/180050.

33

http://www.by-star.net/PLPC/180057
http://www.by-star.net/PLPC/180057
http://www.by-star.net/PLPC/180052
http://www.by-star.net/PLPC/180056
http://www.by-star.net/PLPC/180050

	I Overview
	Summary
	Strategy
	Key Differentiators
	Related Documents
	Part Of A Much Bigger Picture – ByStar and BISOS
	About This Document (Presentation/Podcast)
	Document Outline

	II Generalizing SON For Clouds And Things
	Obvious Desires – Self Organizing Networks
	About SON In The Telecom Context
	Telecom SON Environment: Clean And Standardized Managed Objects
	Nokia's SON Product: EdenNet
	Ericsson's SON Optimization Manager
	Huawei's SON Product: SingleSON
	Cisco SON Suite

	The Equivalent Of SON In Clouds Context
	SON Functions
	Typical Anatomy Of SON Platforms
	Use Of SON Modules In Conjunction With Machine Learning
	Extending SON To Clouds And Things
	Culture Of TelePhants Vs Culture Of Cloud Operators
	Best Of Both Worlds (For TelePhants And Cloud Operators)

	III Overview Of GOSSONoT
	Our Goals And Motivations For Extending SON To Clouds And Things
	About GOSSONoT
	GOSSONoT's Hour Glass Model
	Scope And Scale Of GOSSONoT
	GOSSONoT As Cloud's Management Convergence Point
	An Overview Of GOSSONoT Architecture
	Main Ingridients Of GOSSONoT Architecture

	IV GOSSONoT Software Architecture – Installation And Usage
	GOSSONoT Software Components
	Modules Dispatch – Software Ingredients
	Remote Operations – Web Services
	ICM (Interactive Command Modules) – Software Components
	GOSSONoT-Modules Library And Things Adapters Collection – Software Components

	Integrated Software – Installation
	Current Status Of GOSSONoT Software
	GOSSONoT's Organic Model – Not A Monolithic Paradigm
	Growth Dynamic Of GOSSONoT

	V GOSSONoT-Modules And Interactive Command Modules (ICMs)
	GOSSONoT-Modules Are Specializations Of Interactive Command Modules (ICMs)
	ICM Software And Documentation
	ICM Framework, Modules And Players

	VI GOSSONoT-Things-Interfaces And GOSSONoT-Things-Lists
	Abstraction Of Things
	Things-Interfaces: Primary Things-Adapters And Things-Agents Protocols
	Web Services – Remote Operations Interactive Command Modules (RO-ICM)
	Web Services – Remote Operations Interactive Command Modules (RO-ICM)
	RO-ICM-Performers As Things-Agents
	RO-ICM-Invokers As Things-Adapters

	VII Module-Players: GOSSONoT-Modules Execution User Interfaces And Environments
	Execution Modes Of GOSSONoT-Modules
	Module-Players: User Interface For Execution Of GOSSONoT-Modules

	VIII Integrated Modules Development Environments – Emacs-Blee
	GOSSONoT-Modules Development Environments
	Blee: An Emacs Based Integrated GOSSONoT-Modules Development Environments

	IX Machine-Learning Enhanced GOSSONoT (MLE-GOSSONoT)
	MLE-GOSSONoT
	Structure Of Machine-Learning Enhanced SON Platforms

	X Poly-SON-Modules – GOSSONoT-ICMs And Proprietary SON-Modules
	GOSSONoT-Modules Can Support Secondary SON Platforms
	Example Of A Poly-SON Module Running In Two SON Platforms

	XI Use Case Examples
	Overview Of Scenario Examples
	Self-Configuring: VM Passwords
	Self-Optimizing: IoT – The Home Owner Comes Home
	Self-Healing: Network Performance Monitoring – Links Adjustment

	XII Next Steps
	Next Steps – Evolving GOSSONoT's Core
	Additional Modules And Additional Things-Interfaces

